A putative 6‐transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen

نویسندگان

  • Xiaorong Fan
  • Huimin Feng
  • Yawen Tan
  • Yanling Xu
  • Qisong Miao
  • Guohua Xu
چکیده

OsNRT1.1a is a low-affinity nitrate (NO3 (-) ) transporter gene. In this study, another mRNA splicing product, OsNRT1.1b, putatively encoding a protein with six transmembrane domains, was identified based on the rice genomic database and bioinformatics analysis. OsNRT1.1a/OsNRT1.1b expression in Xenopus oocytes showed OsNRT1.1a-expressing oocytes accumulated (15) N levels to about half as compared to OsNRT1.1b-expressing oocytes. The electrophysiological recording of OsNRT1.1b-expressing oocytes treated with 0.25 mM NO3 (-) confirmed (15) N accumulation data. More functional assays were performed to examine the function of OsNRT1.1b in rice. The expression of both OsNRT1.1a and OsNRT1.1b was abundant in roots and downregulated by nitrogen (N) deficiency. The shoot biomass of transgenic rice plants with OsNRT1.1a or OsNRT1.1b overexpression increased under various N supplies under hydroponic conditions compared to wild-type (WT). The OsNRT1.1a overexpression lines showed increased plant N accumulation compared to the WT in 1.25 mM NH4 NO3 and 2.5 mM NO3 (-) or NH4 (+) treatments, but not in 0.125 mM NH4 NO3 . However, OsNRT1.1b overexpression lines increased total N accumulation in all N treatments, including 0.125 mM NH4 NO3 , suggesting that under low N condition, OsNRT1.1b would accumulate more N in plants and improve rice growth, but also that OsNRT1.1a had no such function in rice plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knock-Down of a Tonoplast Localized Low-Affinity Nitrate Transporter OsNPF7.2 Affects Rice Growth under High Nitrate Supply

The large nitrate transporter 1/peptide transporter family (NPF) has been shown to transport diverse substrates, including nitrate, amino acids, peptides, phytohormones, and glucosinolates. However, the rice (Oryza sativa) root-specific family member OsNPF7.2 has not been functionally characterized. Here, our data show that OsNPF7.2 is a tonoplast localized low-affinity nitrate transporter, tha...

متن کامل

The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants.

Plants have evolved a variety of mechanisms to adapt to N starvation. NITRATE TRANSPORTER2.4 (NRT2.4) is one of seven NRT2 family genes in Arabidopsis thaliana, and NRT2.4 expression is induced under N starvation. Green fluorescent protein and β-glucuronidase reporter analyses revealed that NRT2.4 is a plasma membrane transporter expressed in the epidermis of lateral roots and in or close to th...

متن کامل

Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx.

Root nitrate uptake is well known to adjust to the plant's nitrogen demand for growth. Long-distance transport and/or root storage pools are thought to provide negative feedback signals regulating root uptake. We have characterized a vascular specific nitrate transporter belonging to the high-affinity Nitrate Transporter2 (NRT2) family, OsNRT2.3a, in rice (Oryza sativa ssp. japonica 'Nipponbare...

متن کامل

Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice

Increasing evidence shows that partial nitrate nutrition (PNN) can be attributed to improved plant growth and nitrogen-use efficiency (NUE) in rice. Nitric oxide (NO) is a signalling molecule involved in many physiological processes during plant development and nitrogen (N) assimilation. It remains unclear whether molecular NO improves NUE through PNN. Two rice cultivars (cvs Nanguang and Elio)...

متن کامل

Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice.

Elucidating how rice (Oryza sativa) takes up nitrate at the molecular level could help improve the low recovery rate (<50%) of nitrogen fertilizer in rice paddies. As a first step toward that goal, we have cloned a nitrate transporter gene from rice called OsNRT1. OsNRT1 is a new member of a growing transporter family called PTR, which consists not only of nitrate transporters from higher plant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2016